An Effective Approach to Pose Invariant 3D Face Recognition
نویسندگان
چکیده
One critical challenge encountered by existing face recognition techniques lies in the difficulties of handling varying poses. In this paper, we propose a novel pose invariant 3D face recognition scheme to improve regular face recognition from two aspects. Firstly, we propose an effective geometry based alignment approach, which transforms a 3D face mesh model to a well-aligned 2D image. Secondly, we propose to represent the facial images by a Locality Preserving Sparse Coding (LPSC) algorithm, which is more effective than the regular sparse coding algorithm for face representation. We conducted a set of extensive experiments on both 2D and 3D face recognition, in which the encouraging results showed that the proposed scheme is more effective than the regular face recognition solutions.
منابع مشابه
3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملPose - Invariant Multimodal ( 2 D + 3 D ) Face Recognition using Geodesic Distance Map
In this paper, an efficient pose-invariant face recognition method is proposed. This method is multimodal means that it uses 2D (color) and 3D (depth) information of a face for recognition. In the first step, the geodesic distances of all face points from a reference point are computed. Then, the face points are mapped from the 3D space to a new 2D space. The proposed mapping is robust under th...
متن کاملFace Recognition with Support Vector Machines and 3D Head Models
We present a novel approach to view and pose invariant face recognition that combines two recent advances in the computer vision field: component-based recognition and 3D morphable models. In a first step a 3D morphable model is used to generate 3D face models from only two input images from each person in the training database. By rendering the 3D models under varying pose and illumination con...
متن کاملPose Invariant Approach for Face Recognition at Distance
We propose an automatic pose invariant approach for Face Recognition At a Distance (FRAD). Since face alignment is a crucial step in face recognition systems, we propose a novel facial features extraction model, which guides extended ASM to accurately align the face. Our main concern is to recognize human faces under uncontrolled environment at far distances accurately and fast. To achieve this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011